Bearing Faults Classification Using THH and Neural Network
نویسنده
چکیده
The induction machine has many advantages: its specific power, its strength, relatively low manufacturing cost and minimal maintenance. But despite all these qualities, a number of faults can affect the life of the machine showing premature failures. The purpose of preventive maintenance in real time, we introduce a new signal processing technique based on HilbertHuang Transform (HHT) and marginal spectrum. Firstly, the current signals are decomposed into several intrinsic mode function (IMFs) using the empirical mode decomposition (EMD). The Hilbert Huang spectrum for each IMF is an energy representation in the time-frequency domain using the instantaneous frequency. The marginal spectrum of each IMF can then be obtained. The next step is the classification of faults detected by the application of neural network on IMFs. Tests on real signals show that the marginal spectrum of the second IMFs can be used for the detection and classification of bearing faults. The proposed approach provides a viable signal processing tool for an online machine health status monitoring.
منابع مشابه
Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملResearch on the Classification for Faults of Rolling Bearing Based on Multi-weights Neural Network
A methodology based on multi-weights neural network (MWNN) is presented to identify faults of rolling bearing. With considerations of difficulties in analyzing rolling bearing vibration data, we analyzed how to extract time domain feature parameters of faults. Further, the time domain feature parameters extracted from fault signals are utilized to train multi-weights neural network for achievin...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملDetection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network
Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012